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Recommended literature

1. A. Chao. Physics of Collective Beam Instabilities in High Energy
Rings, 1993 (avalable from
http://www.slac.stanford.edu/~achao/wileybook.html).
2. P. Wilson. Introduction to Wakefields and Wake Potentials. AIP
Conference Proceedings 184, 1989 (http:
//www.slac.stanford.edu/~stupakov/uspas19/1989_Wilson.pdf).
3. A. Wolsky. “Beam Dynamics in High Energy Particle Accelerators”,
Imperial College Press, 2014 (see lectures 6,7,8 from USPAS 2013 at
http://pcwww.liv.ac.uk/~awolski/)
4. K. Y. Ng. Physics of Intensity Dependent Beam Instabilities, World
Scientific, 2005.
5. J. D. Jackson. Classical Electrodynamics. John Wiley, New York,
1962, 1974, and 1998.
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Maxwell’s equations

We will use the MKS system of units.

Classical electrodynamics in vacuum is governed by the Maxwell
equations. In the MKS system of units, the equations are

∇ ·D = ρ, ∇ · B = 0

∇× E = −
∂B
∂t
, ∇×H = j +

∂D
∂t

(1.1)

where ρ is the charge density, j is the current density, with D = ε0E ,
H = B/µ0. D is called the electric displacement, B is called the
magnetic induction, and H is called the magnetic field. The term ∂D/∂t
is often called the displacement current.

Maxwell’s equations are linear: the sum of two solutions, E 1, B1 and E 2,
B2, is also a solution corresponding to the sum of densities ρ1 + ρ2,
j 1 + j 2.
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Boundary conditions

Proper boundary conditions should be specified in each particular case.
On a surface of a good conducting metal the boundary condition requires
that the tangential component of the electric field is equal to zero,
E t |S = 0 (we will talk more about the boundary condition in L5).

In some cases one can neglect the boundaries. We then need to solve the
Maxwell equations in free space. This usually means that the fields tend
to zero at infinity.

We will talk more about the boundary conditions on the surface of a
good conductor; they are often called the Leontovich boundary condition.
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SI versus Gaussian system of units

We will use the vacuum impedance Z0

Z0 =

√
µ0

ε0
≈ 377 Ohm (1.2)

In CGS units Z0 = 4π/c .
We also have

c =
1

√
µ0ε0

(1.3)
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The Lorentz transformation

Consider two coordinate systems, K (labo-
ratory) and K ′ (beam). The system K ′ is
moving with velocity v in the z direction rel-
ative to the system K . The coordinates of
an event in both systems are related by the
Lorentz transformation

x = x ′, y = y ′ x ′ = x , y ′ = y ,

z = γ(z ′ + βct ′) z ′ = γ(z − βct) ,

t = γ(t ′ + βz ′/c) t ′ = γ(t − βz/c) (1.4)

where β = v/c , and γ = 1/
√

1 − β2.
The total energy of a relativistic particle is

E = γmc2 (1.5)

The electron mass is me = 0.511 MeV/c2, for the proton mp = 0.938 GeV/c2.
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The Lorentz factor γ

Our interest is with relativistic beams. In the limit γ� 1, a useful
approximation is

β =

√
1 −

1

γ2
≈ 1 −

1

2γ2
(1.6)

Example: 10 GeV electrons have γ ≈ 2× 104, so 1 − β ≈ 1.3× 10−9

(c − v = 1.4 km/h). 7 TeV protons in LHC have γ = 7.4× 103.
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Lorentz contraction and time dilation

Two events occurring in the moving frame at the same point and
separated by the time interval ∆t ′ will be measured by the lab observers
as separated by ∆t,

∆t = γ∆t ′

This is the effect of relativistic time dilation. Example: the lifetime of
muons is 2.4µs → muon collider.

An object of length ` ′ aligned in the moving frame with the z ′ axis will
have the length ` in the lab frame:

` =
` ′

γ

This is the effect of relativistic contraction. The length in the direction
transverse to the motion is not changed. Example: the bunch length in
the beam frame.
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Lorentz transformation of fields

The electromagnetic field is transformed from K ′ to K according to the
following equations

Ez = E ′z , E⊥ = γ
(
E ′⊥ − v × B ′

)
,

Bz = B ′z , B⊥ = γ

(
B ′⊥ +

1

c2
v × E ′

)
, (1.7)

where E ′⊥ and B ′⊥ are the components of the electric and magnetic fields
perpendicular to the velocity v : E ′⊥ = (Ex ,Ey ), B ′⊥ = (Bx ,By ).

A big drawback of the MKS system of units is that E and B have
different dimensions ([E ] = [cB]). In special theory of relativity whether
you have E or B depends on the frame of reference. B = 1 T (a
neodymium magnet) corresponds to the electric field of E = 300 MV/m.
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Vector and scalar potentials

It is often convenient to express the fields in terms of the vector potential A and
the scalar potential φ:

E = −∇φ−
∂A
∂t

B = ∇× A (1.8)

Substituting these equations into Maxwell’s equations, we find that the second
and the third equations are satisfied identically. We only need to take care of
the first and the fourth equations.

The electromagnetic potentials (φ/c ,A) are transformed exactly as the 4-vector
(ct, r):

Ax = A ′x
Ay = A ′y

Az = γ
(
A ′z +

v

c2
φ ′
)

φ = γ(φ ′ + vA ′z) (1.9)
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